Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Nat Commun ; 14(1): 3393, 2023 Jun 09.
Article in English | MEDLINE | ID: covidwho-20243266

ABSTRACT

Detection of secretory antibodies in the airway is highly desirable when evaluating mucosal protection by vaccines against a respiratory virus, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We show that intranasal delivery of an attenuated SARS-CoV-2 (Nsp1-K164A/H165A) induces both mucosal and systemic IgA and IgG in male Syrian hamsters. Interestingly, either direct intranasal immunization or airborne transmission-mediated delivery of Nsp1-K164A/H165A in Syrian hamsters offers protection against heterologous challenge with variants of concern (VOCs) including Delta, Omicron BA.1, BA.2.12.1 and BA.5. Vaccinated animals show significant reduction in both tissue viral loads and lung inflammation. Similarly attenuated viruses bearing BA.1 and BA.5 spike boost variant-specific neutralizing antibodies in male mice that were first vaccinated with modified vaccinia virus Ankara vectors (MVA) expressing full-length WA1/2020 Spike protein. Together, these results demonstrate that our attenuated virus may be a promising nasal vaccine candidate for boosting mucosal immunity against future SARS-CoV-2 VOCs.


Subject(s)
COVID-19 , Male , Cricetinae , Animals , Mice , COVID-19/prevention & control , Mesocricetus , Respiratory Aerosols and Droplets , SARS-CoV-2 , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral
2.
Nat Commun ; 13(1): 6792, 2022 Nov 10.
Article in English | MEDLINE | ID: covidwho-2117248

ABSTRACT

Few live attenuated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are in pre-clinical or clinical development. We seek to attenuate SARS-CoV-2 (isolate WA1/2020) by removing the polybasic insert within the spike protein and the open reading frames (ORFs) 6-8, and by introducing mutations that abolish non-structural protein 1 (Nsp1)-mediated toxicity. The derived virus (WA1-ΔPRRA-ΔORF6-8-Nsp1K164A/H165A) replicates to 100- to 1000-fold-lower titers than the ancestral virus and induces little lung pathology in both K18-human ACE2 (hACE2) transgenic mice and Syrian hamsters. Immunofluorescence and transcriptomic analyses of infected hamsters confirm that three-pronged genetic modifications attenuate the proinflammatory pathways more than the removal of the polybasic cleavage site alone. Finally, intranasal administration of just 100 PFU of the WA1-ΔPRRA-ΔORF6-8-Nsp1K164A/H165A elicits robust antibody responses in Syrian hamsters and protects against SARS-CoV-2-induced weight loss and pneumonia. As a proof-of-concept study, we demonstrate that live but sufficiently attenuated SARS-CoV-2 vaccines may be attainable by rational design.


Subject(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Mice , Animals , Humans , SARS-CoV-2/genetics , Mesocricetus , Antibody Formation , Administration, Intranasal , COVID-19 Vaccines , COVID-19/prevention & control , Lung/pathology , Mice, Transgenic , Spike Glycoprotein, Coronavirus/genetics
3.
Trials ; 23(1): 190, 2022 Mar 03.
Article in English | MEDLINE | ID: covidwho-2064837

ABSTRACT

BACKGROUND: The utilization of mobile health (m-health) has rapidly expanded during the COVID-19 pandemic, and there is still a lack of relevant clinical data pertaining to chronic low-back pain (CLBP) management. This study was designed to compare the effectiveness of m-health-based exercise (via guidance plus education) versus exercise (via guidance) during CLBP management. METHODS: Participants (n = 40) were randomly assigned to intervention and control groups. The intervention group received m-health-based exercise (via guidance plus education), whereas the control group received m-health-based exercise (via guidance). The exercise prescription video and educational content were sent to participants by the application (app), Ding Talk. Repeated-measures analysis of variance was used to test the baseline's intervention effects, 6-week follow-up, and 18-week follow-up. We selected function (Roland and Morris Disability Questionnaire) and pain intensity (current, mean, and most severe Numeric Rating Scale in the last 2 weeks) as the primary outcomes, changes of negative emotion (depression, anxious), and quality of life as the secondary outcomes. RESULTS: Time's significant effect was found in pain, function, and health-related quality of life in both groups, but time did not show significant interaction effects. Participants were able to use m-based education with their anxiety and depression after treatment, but the relief only lasted until week 6. No differences were found on the aspect of mental health-related quality of life. CONCLUSION: Preliminary findings suggest that m-health-based exercise (via guidance) may be a convenient and effective method to treat CLBP. However, additional health education didn't help more. More rigorous controlled trials are needed to improve the therapeutic effect in future studies. TRIAL REGISTRATION: Chinese Clinical Trials Registry Number ChiCTR2000041459 . Registered on December 26, 2020.


Subject(s)
COVID-19 , Chronic Pain , Low Back Pain , Telemedicine , Chronic Pain/diagnosis , Chronic Pain/therapy , Exercise Therapy , Humans , Low Back Pain/diagnosis , Low Back Pain/psychology , Low Back Pain/therapy , Pandemics , Quality of Life , SARS-CoV-2 , Treatment Outcome
4.
Cell Rep ; 40(11): 111359, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-2003920

ABSTRACT

Despite being more transmissible, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant only causes milder diseases in laboratory animals, often accompanied by a lower viral load compared with previous variants of concern. In this study, we report the structural basis for a robust interaction between the receptor-binding domain of the Omicron spike protein and mouse ACE2. We show that pseudovirus bearing the Omicron spike protein efficiently utilizes mouse ACE2 for entry. By comparing viral load and disease severity among laboratory mice infected by a natural Omicron variant or recombinant ancestral viruses bearing either the entire Omicron spike or only the N501Y/Q493R mutations in its spike, we find that mutations outside the spike protein in the Omicron variant may be responsible for the observed lower viral load. Together, our results imply that a post-entry block to the Omicron variant exists in laboratory mice.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Animals , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization
5.
J Virol ; 96(17): e0114022, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-2001778

ABSTRACT

The SARS-CoV-2 Omicron variants were first detected in November 2021, and several Omicron lineages (BA.1, BA.2, BA.3, BA.4, and BA.5) have since rapidly emerged. Studies characterizing the mechanisms of Omicron variant infection and sensitivity to neutralizing antibodies induced upon vaccination are ongoing by several groups. In the present study, we used pseudoviruses to show that the transmembrane serine protease 2 (TMPRSS2) enhances infection of BA.1, BA.1.1, BA.2, and BA.3 Omicron variants to a lesser extent than ancestral D614G. We further show that Omicron variants have higher sensitivity to inhibition by soluble angiotensin-converting enzyme 2 (ACE2) and the endosomal inhibitor chloroquine compared to D614G. The Omicron variants also more efficiently used ACE2 receptors from 9 out of 10 animal species tested, and unlike the D614G variant, used mouse ACE2 due to the Q493R and Q498R spike substitutions. Finally, neutralization of the Omicron variants by antibodies induced by three doses of Pfizer/BNT162b2 mRNA vaccine was 7- to 8-fold less potent than the D614G. These results provide insights into the transmissibility and immune evasion capacity of the emerging Omicron variants to curb their ongoing spread. IMPORTANCE The ongoing emergence of SARS-CoV-2 Omicron variants with an extensive number of spike mutations poses a significant public health and zoonotic concern due to enhanced transmission fitness and escape from neutralizing antibodies. We studied three Omicron lineage variants (BA.1, BA.2, and BA.3) and found that transmembrane serine protease 2 has less influence on Omicron entry into cells than on D614G, and Omicron exhibits greater sensitivity to endosomal entry inhibition compared to D614G. In addition, Omicron displays more efficient usage of diverse animal species ACE2 receptors than D614G. Furthermore, due to Q493R/Q498R substitutions in spike, Omicron, but not D614G, can use the mouse ACE2 receptor. Finally, three doses of Pfizer/BNT162b2 mRNA vaccination elicit high neutralization titers against Omicron variants, although the neutralization titers are still 7- to 8-fold lower those that against D614G. These results may give insights into the transmissibility and immune evasion capacity of the emerging Omicron variants to curb their ongoing spread.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antibodies, Neutralizing , COVID-19 , Immune Evasion , SARS-CoV-2 , Virus Internalization , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/immunology , COVID-19/immunology , COVID-19/virology , Humans , Immune Evasion/immunology , Mice , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Species Specificity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
6.
Sci Rep ; 11(1): 22195, 2021 11 12.
Article in English | MEDLINE | ID: covidwho-1514424

ABSTRACT

To initiate SARS-CoV-2 infection, the Receptor Binding Domain (RBD) on the viral spike protein must first bind to the host receptor ACE2 protein on pulmonary and other ACE2-expressing cells. We hypothesized that cardiac glycoside drugs might block the binding reaction between ACE2 and the Spike (S) protein, and thus block viral penetration into target cells. To test this hypothesis we developed a biochemical assay for ACE2:Spike binding, and tested cardiac glycosides as inhibitors of binding. Here we report that ouabain, digitoxin, and digoxin, as well as sugar-free derivatives digitoxigenin and digoxigenin, are high-affinity competitive inhibitors of ACE2 binding to the Original [D614] S1 and the α/ß/γ [D614G] S1 proteins. These drugs also inhibit ACE2 binding to the Original RBD, as well as to RBD proteins containing the ß [E484K], Mink [Y453F] and α/ß/γ [N501Y] mutations. As hypothesized, we also found that ouabain, digitoxin and digoxin blocked penetration by SARS-CoV-2 Spike-pseudotyped virus into human lung cells, and infectivity by native SARS-CoV-2. These data indicate that cardiac glycosides may block viral penetration into the target cell by first inhibiting ACE2:RBD binding. Clinical concentrations of ouabain and digitoxin are relatively safe for short term use for subjects with normal hearts. It has therefore not escaped our attention that these common cardiac medications could be deployed worldwide as inexpensive repurposed drugs for anti-COVID-19 therapy.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19 Drug Treatment , Cardiotonic Agents/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization/drug effects , A549 Cells , Animals , COVID-19/metabolism , Chlorocebus aethiops , Digitoxin/pharmacology , Digoxin/pharmacology , Humans , Lung/drug effects , Lung/metabolism , Ouabain/pharmacology , Protein Binding/drug effects , SARS-CoV-2/physiology , Vero Cells
7.
J Chem Inf Model ; 61(10): 5133-5140, 2021 10 25.
Article in English | MEDLINE | ID: covidwho-1467038

ABSTRACT

The newly emerging Kappa, Delta, and Lambda SARS-CoV-2 variants are worrisome, characterized with the double mutations E484Q/L452R, T478K/L452R, and F490S/L452Q, respectively, in their receptor binding domains (RBDs) of the spike proteins. As revealed in crystal structures, most of these residues (e.g., 452 and 484 in RBDs) are not in direct contact with interfacial residues in the angiotensin-converting enzyme 2 (ACE2). This suggests that albeit there are some possibly nonlocal effects, these mutations might not significantly affect RBD's binding with ACE2, which is an important step for viral entry into host cells. Thus, without knowing the molecular mechanism, these successful mutations (from the point of view of SARS-CoV-2) may be hypothesized to evade human antibodies. Using all-atom molecular dynamics (MD) simulation, here, we show that the E484Q/L452R mutations significantly reduce the binding affinity between the RBD of the Kappa variant and the antibody LY-CoV555 (also named as Bamlanivimab), which was efficacious for neutralizing the wild-type SARS-CoV-2. To verify simulation results, we further carried out experiments with both pseudovirions- and live virus-based neutralization assays and demonstrated that LY-CoV555 completely lost neutralizing activity against the L452R/E484Q mutant. Similarly, we show that mutations in the Delta and Lambda variants can also destabilize the RBD's binding with LY-CoV555. With the revealed molecular mechanism on how these variants evade LY-CoV555, we expect that more specific therapeutic antibodies can be accordingly designed and/or a precise mixing of antibodies can be achieved as a cocktail treatment for patients infected with these variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Mutation , Protein Binding , Spike Glycoprotein, Coronavirus/metabolism
8.
Life Sci Alliance ; 4(4)2021 04.
Article in English | MEDLINE | ID: covidwho-1389962

ABSTRACT

A critical question in understanding the immunity to SARS-COV-2 is whether recovered patients are protected against re-challenge and transmission upon second exposure. We developed a Syrian hamster model in which intranasal inoculation of just 100 TCID50 virus caused viral pneumonia. Aged hamsters developed more severe disease and even succumbed to SARS-CoV-2 infection, representing the first lethal model using genetically unmodified laboratory animals. After initial viral clearance, the hamsters were re-challenged with 105 TCID50 SARS-CoV-2 and displayed more than 4 log reduction in median viral loads in both nasal washes and lungs in comparison to primary infections. Most importantly, re-challenged hamsters were unable to transmit virus to naïve hamsters, and this was accompanied by the presence of neutralizing antibodies. Altogether, these results show that SARS-CoV-2 infection induces protective immunity that not only prevents re-exposure but also limits transmission in hamsters. These findings may help guide public health policies and vaccine development and aid evaluation of effective vaccines against SARS-CoV-2.


Subject(s)
COVID-19/immunology , COVID-19/transmission , Immunity , Reinfection/immunology , Reinfection/transmission , SARS-CoV-2/immunology , Age Factors , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/virology , Chlorocebus aethiops , Cricetinae , Disease Models, Animal , Female , HEK293 Cells , Humans , Male , RNA, Viral/genetics , Reinfection/virology , SARS-CoV-2/genetics , Transfection , Vero Cells , Viral Load
9.
PLoS One ; 16(3): e0248348, 2021.
Article in English | MEDLINE | ID: covidwho-1388906

ABSTRACT

Pseudoviruses are useful surrogates for highly pathogenic viruses because of their safety, genetic stability, and scalability for screening assays. Many different pseudovirus platforms exist, each with different advantages and limitations. Here we report our efforts to optimize and characterize an HIV-based lentiviral pseudovirus assay for screening neutralizing antibodies for SARS-CoV-2 using a stable 293T cell line expressing human angiotensin converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). We assessed different target cells, established conditions that generate readouts over at least a two-log range, and confirmed consistent neutralization titers over a range of pseudovirus input. Using reference sera and plasma panels, we evaluated assay precision and showed that our neutralization titers correlate well with results reported in other assays. Overall, our lentiviral assay is relatively simple, scalable, and suitable for a variety of SARS-CoV-2 entry and neutralization screening assays.


Subject(s)
COVID-19/metabolism , Lentivirus/metabolism , Neutralization Tests/methods , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Drug Evaluation, Preclinical/methods , HEK293 Cells , Humans , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
10.
mSphere ; : e0050721, 2021 Jun 16.
Article in English | MEDLINE | ID: covidwho-1270880

ABSTRACT

Epidemiological studies have revealed the emergence of multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC), including the lineage B.1.1.7 that is rapidly replacing old variants. The B.1.1.7 variant has been linked to increased morbidity rates, transmissibility, and potentially mortality. To assess viral fitness in vivo and to address whether the B.1.1.7 variant is capable of immune escape, we conducted infection and reinfection studies in naive and convalescent Syrian hamsters (>10 months old). Nasal wash samples from hamsters infected by a B.1.1.7 variant exhibited slightly higher viral RNA levels but lower infectious titers than those from B.1 (G614) variant-infected hamsters, and the two variants induced comparable lung pathologies in hamsters. Despite a sporadic and transient low-level infection in the nasal cavity, convalescent hamsters that had recovered from a previous USA-WA1 isolate (D614) infection displayed no observable clinical signs or lung pathology following B.1.1.7 rechallenge. Altogether, our study did not find that the B.1.1.7 variant significantly differs from the B.1 variant in pathogenicity in Syrian hamsters and that a heterologous natural infection-induced immunity confers protection against a secondary challenge by the B1.1.7 variant. IMPORTANCE The rapid emergence of several variants of concern of SARS-CoV-2 calls for evaluations of viral fitness and pathogenicity in animal models in order to understand the mechanism of enhanced transmission and the possible increases in morbidity and mortality rates. Here, we demonstrated that immunity naturally acquired through a prior infection with the first-wave variant does confer nearly complete protection against the B.1.1.7 variant in Syrian hamsters upon reexposure. Strikingly, although the B.1.1.7 variant appears to replicate to a higher level in the nose than the ancestral B.1 variant, it does not induce more severe lung pathology in hamsters.

11.
J Virol ; 2021 Mar 08.
Article in English | MEDLINE | ID: covidwho-1123591

ABSTRACT

Biochemical and structural analyses suggest that SARS-CoV-2 is well-adapted to infecting humans and the presence of four residues (PRRA) at the S1/S2 site within the spike (S) protein, which may lead to unexpected tissue or host tropism. Here we report that SARS-CoV-2 efficiently utilized ACE2 of 9 species to infect 293T cells. Similarly, pseudoviruses bearing S protein derived from either the bat RaTG13 or pangolin GX, two closely related animal coronaviruses, utilized ACE2 of a diverse range of animal species to gain entry. Removal of PRRA from SARS-CoV-2 S protein displayed distinct effects on pseudoviral entry into different cell types. Unexpectedly, insertion of PRRA into the RaTG13 S protein selectively abrogated the usage of horseshoe bat and pangolin ACE2 but enhanced the usage of mouse ACE2 by the relevant pseudovirus to enter cells. Together, our findings identified a previously unrecognized effect of the PRRA insert on SARS-CoV-2 and RaTG13 S proteins.ImportanceThe four-residue insert (PRRA) at the boundary between the S1and S2 subunits of SARS-CoV-2 has been widely recognized since day 1 for its role in SARS-CoV-2 S protein processing and activation. As this PRRA insert is unique to SARS-CoV-2 among group b betacoronaviruses, it is thought to affect the tissue and species tropism of SARS-CoV-2. We compared the usage of 10 ACE2 orthologs and found that the presence of PRRA not only affects the cellular tropism of SARS-CoV-2 but also modulates the usage of ACE2 orthologs by the closely related bat RaTG13 S protein. The binding of pseudovirions carrying RaTG13 S with a PRRA insert to mouse ACE2 was nearly 2-fold higher than that of pseudovirions carrying RaTG13 S.

12.
Virology ; 556: 96-100, 2021 04.
Article in English | MEDLINE | ID: covidwho-1046110

ABSTRACT

Dynamic tracking of variant frequencies among viruses circulating in the global pandemic has revealed the emergence and dominance of a D614G mutation in the SARS-CoV-2 spike protein. To address whether pandemic SARS-CoV-2 G614 variant has evolved to become more pathogenic, we infected adult hamsters (>10 months old) with two natural SARS-CoV-2 variants carrying either D614 or G614 spike protein to mimic infection of the adult/elderly human population. Hamsters infected by the two variants exhibited comparable viral loads and pathology in lung tissues as well as similar amounts of virus shed in nasal washes. Altogether, our study does not find that naturally circulating D614 and G614 SARS-CoV-2 variants differ significantly in pathogenicity in hamsters.


Subject(s)
COVID-19/virology , SARS-CoV-2/pathogenicity , Animals , Antibodies, Neutralizing/blood , COVID-19/pathology , Chlorocebus aethiops , Disease Models, Animal , Female , Lung/pathology , Lung/virology , Male , Mesocricetus , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Viral Load , Weight Loss
13.
Sci Transl Med ; 12(550)2020 07 01.
Article in English | MEDLINE | ID: covidwho-591374

ABSTRACT

Multiple vaccine candidates against SARS-CoV-2 based on viral spike protein are under development. However, there is limited information on the quality of antibody responses generated with these vaccine modalities. To better understand antibody responses induced by spike protein-based vaccines, we performed a qualitative study by immunizing rabbits with various SARS-CoV-2 spike protein antigens: S ectodomain (S1+S2; amino acids 16 to 1213), which lacks the cytoplasmic and transmembrane domains (CT-TM), the S1 domain (amino acids 16 to 685), the receptor binding domain (RBD) (amino acids 319 to 541), and the S2 domain (amino acids 686 to 1213, lacking the RBD, as control). Resulting antibody quality and function were analyzed by enzyme-linked immunosorbent assay (ELISA), RBD competition assay, surface plasmon resonance (SPR) against different spike proteins in native conformation, and neutralization assays. All three antigens (S1+S2 ectodomain, S1 domain, and RBD), but not S2, generated strong neutralizing antibodies against SARS-CoV-2. Vaccination-induced antibody repertoire was analyzed by SARS-CoV-2 spike genome fragment phage display libraries (SARS-CoV-2 GFPDL), which identified immunodominant epitopes in the S1, S1-RBD, and S2 domains. Furthermore, these analyses demonstrated that the RBD immunogen elicited a higher antibody titer with five-fold higher affinity antibodies to native spike antigens compared with other spike antigens, and antibody affinity correlated strongly with neutralization titers. These findings may help guide rational vaccine design and facilitate development and evaluation of effective therapeutics and vaccines against COVID-19 disease.


Subject(s)
Antibodies, Viral/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/immunology , Antibody Formation/immunology , Antigens, Viral/immunology , Epitopes/immunology , Female , Immunization , Neutralization Tests , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL